179 research outputs found

    Physical process version of the first law of thermodynamics for black holes in Einstein-Maxwell axion-dilaton gravity

    Get PDF
    We derive general formulae for the first order variation of the ADM mass, angular momentum for linear perturbations of a stationary background in Einstein-Maxwell axion-dilaton gravity being the low-energy limit of the heterotic string theory. All these variations were expressed in terms of the perturbed matter energy momentum tensor and the perturbed charge current density. Combining these expressions we reached to the form of the {\it physical version} of the first law of black hole dynamics for the stationary black holes in the considered theory being the strong support for the cosmic censorship.Comment: 8 pages, Revte

    Thick Domain Walls in AdS Black Hole Spacetimes

    Get PDF
    Equations of motion for a real self-gravitating scalar field in the background of a black hole with negative cosmological constant were solved numerically. We obtain a sequence of static axisymmetric solutions representing thick domain wall cosmological black hole systems, depending on the mass of black hole, cosmological parameter and the parameter binding black hole mass with the width of the domain wall. For the case of extremal cosmological black hole the expulsion of scalar field from the black hole strongly depends on it.Comment: 20 pages, 19 figures, accepted for publication in Phys. Rev.

    Superconducting Hair on Charged Black String Background

    Full text link
    Behaviour of Dirac fermions in the background of a charged black string penetrated by an Abelian Higgs vortex is elaborated. One finds the evidence that the system under consideration can support fermion fields acting like a superconducting cosmic string in the sence that a nontrivial Dirac fermion field can be carried by the system in question. The case of nonextremal and extremal black string vortex systems were considered. The influence of electric and Higgs charge, the winding number and the fermion mass on the fermion localization near the black string event horizon was studied. It turned out that the extreme charged black string expelled fermion fields more violently comparing to the nonextremal one.Comment: RevTex, 16 pages, 12 figures, to be published in Phys.REvD1

    A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric

    Get PDF
    A key result in the proof of black hole uniqueness in 4-dimensions is that a stationary black hole that is ``rotating''--i.e., is such that the stationary Killing field is not everywhere normal to the horizon--must be axisymmetric. The proof of this result in 4-dimensions relies on the fact that the orbits of the stationary Killing field on the horizon have the property that they must return to the same null geodesic generator of the horizon after a certain period, PP. This latter property follows, in turn, from the fact that the cross-sections of the horizon are two-dimensional spheres. However, in spacetimes of dimension greater than 4, it is no longer true that the orbits of the stationary Killing field on the horizon must return to the same null geodesic generator. In this paper, we prove that, nevertheless, a higher dimensional stationary black hole that is rotating must be axisymmetric. No assumptions are made concerning the topology of the horizon cross-sections other than that they are compact. However, we assume that the horizon is non-degenerate and, as in the 4-dimensional proof, that the spacetime is analytic.Comment: 24 pages, no figures, v2: footnotes and references added, v3: numerous minor revision

    Decay of Dirac Massive Hair in the Background of Spherical Black Hole

    Full text link
    The intermediate and late-time behaviour of massive Dirac hair in the static spherically symmetric black hole spacetime was studied. It was revealed that the intermediate asymptotic pattern of decay of massive Dirac spinor hair is dependent on the mass of the field under consideration as well as the multiple number of the wave mode. The long-lived oscillatory tail observed at timelike infinity in the considered background decays slowly as t^{-5/6}.Comment: 8 pages, 5 figures, RevTex, to be published in Phys.Rev.D1

    Dynamical Collapse of Charged Scalar Field in Phantom Gravity

    Full text link
    We investigated the problem of the dynamical collapse of a self-gravitating complex charged scalar field in Einstein-Maxwell-dilaton theory with a phantom copuling for the adequate fields in the system under consideration. We also considered two simplifications of it, i.e., the separate collapses of phantom Maxwell and phantom scalar fields under the influence of Einstein gravity. One starts with the regular spacetime and leads the evolution through the formation of the horizons and the final singularity. We discuss the structures of spacetimes emerging in the process of the dynamical collapse and comment on the role of the considered fields in its course.Comment: 15 pages, RevTex, 18 figures, to be published in Phys.Rev.D1

    Mechanics of multidimensional isolated horizons

    Full text link
    Recently a multidimensional generalization of Isolated Horizon framework has been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the geometric description was easily generalized to higher dimensions and the structure of the constraints induced by the Einstein equations was analyzed. In particular, the geometric version of the zeroth law of the black hole thermodynamics was proved. In this work we show how the IH mechanics can be formulated in a dimension--independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH. We also propose a definition of energy for non--rotating horizons.Comment: 25 pages, 4 figures (eps), last sections revised, acknowledgements and a section about the gauge invariance of introduced quantities added; typos corrected, footnote 4 on page 9 adde

    Thick Domain Walls and Charged Dilaton Black Holes

    Get PDF
    We study a black hole domain wall system in dilaton gravity which is the low-energy limit of the superstring theory. We solve numerically equations of motion for real self-interacting scalar field and justify the existence of static axisymmetric field configuration representing the thick domain wall in the background of a charged dilaton black hole. It was also confirmed that the extreme dilaton black hole always expelled the domain wall.Comment: 10 pages, 8 figures; to be published in Phys. Rev. D1
    • 

    corecore